All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards tensor generalizations of TLS & core problem theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F18%3A00001855" target="_blank" >RIV/46747885:24510/18:00001855 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/pamm.201800196" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/pamm.201800196</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/pamm.201800196" target="_blank" >10.1002/pamm.201800196</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards tensor generalizations of TLS & core problem theory

  • Original language description

    Despite the wide attention, there are still several not well understood parts in the theory of total least squares (TLS) formulation of linear algebraic approximation problems. In particular, in the problems with multiple (matrix) right‐hand sides one can ask about the meaning of the nongeneric solution in the context of the original data, the nonexistence of the TLS solution for the so‐called irreducible core problems, etc. In the single (vector) right‐hand side TLS, these problems can be easily explained through the core problem theory or simply do not appear. Here we summarize, how the existing TLS and core problem theory can be generalized to problems with tensor right‐hand sides. Such generalization also gives a natural and wider context for further analysis of the above mentioned questions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings in Applied Mathematics and Mechanics

  • ISSN

    1617-7061

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    2

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database