The Core Problem --- Analysis, Properties, and Behaviour
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F23%3A00012701" target="_blank" >RIV/46747885:24510/23:00012701 - isvavai.cz</a>
Result on the web
<a href="https://kma.fp.tul.cz/externi-data/soubory/zaverecne-prace/2024-OM-PHD_Zakova.pdf" target="_blank" >https://kma.fp.tul.cz/externi-data/soubory/zaverecne-prace/2024-OM-PHD_Zakova.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Core Problem --- Analysis, Properties, and Behaviour
Original language description
A wide range of problems arising in real-world applications needs to be solved as linear approximation problems, since they might contain some errors in data. This thesis focuses on solving such problems with the method of the total least squares and the reduction to the so-called core problem within, which is briefly recapitulated in Part I. Although the core problem concept brought important results on solvability of the vector right-hand side problem, it is not completely true for the problem with matrix right-hand side as the core problem within may not have a TLS solution. Therefore, this thesis aims to examine the ‘internal structure’ of the matrix right-hand side core problems as well as to ‘look around’ this problem in order to find possible generalizations. In Part II we build general algebraic framework, which enables to interpret the core problem reduction as the orthogonal projection from the set of general approximation problems onto the set of core problems and partially open the question of the core problem (de)composition and (ir)reducibility. Part III extends the core problem theory with three possible generalizations, namely we present the core problem reductions within the linear approximation problem with tensor right-hand side, the bilinear problem with matrix right-hand side and the multilinear problem with tensor right-hand side. The text of this thesis is complemented by copies of the relevant published articles of the applicant.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů