All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cubic spline wavelets with four vanishing moments on the interval and their applications to option pricing under Kou model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F19%3A00005701" target="_blank" >RIV/46747885:24510/19:00005701 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.worldscientific.com/doi/10.1142/S0219691318500613" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0219691318500613</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0219691318500613" target="_blank" >10.1142/S0219691318500613</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cubic spline wavelets with four vanishing moments on the interval and their applications to option pricing under Kou model

  • Original language description

    The paper is concerned with the construction of a cubic spline wavelet basis on the unit interval and an adaptation of this basis to the first-order homogeneous Dirichlet boundary conditions. The wavelets have four vanishing moments and they have the shortest possible support among all cubic spline wavelets with four vanishing moments corresponding to B-spline scaling functions. We provide a rigorous proof of the stability of the basis in the space L2(0,1) or its subspace incorporating boundary conditions. To illustrate the applicability of the constructed bases, we apply the wavelet-Galerkin method to option pricing under the double exponential jump-diffusion model and we compare the results with other cubic spline wavelet bases and with other methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-09541S" target="_blank" >GA16-09541S: Robust numerical schemes for pricing of selected options under various market conditions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING

  • ISSN

    0219-6913

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    27

  • Pages from-to

  • UT code for WoS article

    000458647200003

  • EID of the result in the Scopus database

    2-s2.0-85053307093