All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Wavelet Method for Sensitivity Analysis of European Options under Merton Jump-Diffusion Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F22%3A00010392" target="_blank" >RIV/46747885:24510/22:00010392 - isvavai.cz</a>

  • Result on the web

    <a href="https://aip.scitation.org/doi/abs/10.1063/5.0081442" target="_blank" >https://aip.scitation.org/doi/abs/10.1063/5.0081442</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0081442" target="_blank" >10.1063/5.0081442</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Wavelet Method for Sensitivity Analysis of European Options under Merton Jump-Diffusion Model

  • Original language description

    The paper is concerned with the valuation of European option prices and Greeks under the Merton jump-diffusion model. This model is represented by the nonstationary integro-differential equation with a degenerate elliptic differential operator. The Galerkin method with cubic spline wavelets is employed for spatial discretization combined with the Crank-Nicolson scheme and Richardson extrapolation for time discretization. This method provides many advantages, such as sparse and uniformly conditioned discretization matrices, high-order convergence, and a small number of parameters representing the solution with the desired accuracy. Numerical experiments are presented for the European vanilla put option to illustrate the efficiency and applicability of the proposed scheme.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIP Conference Proceedings

  • ISBN

    978-073544182-8

  • ISSN

    0094243X

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    American Institute of Physics Inc.

  • Place of publication

    New York

  • Event location

    Rhodes

  • Event date

    Jan 1, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article