Wavelet Method for Sensitivity Analysis of European Options under Merton Jump-Diffusion Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F22%3A00010392" target="_blank" >RIV/46747885:24510/22:00010392 - isvavai.cz</a>
Result on the web
<a href="https://aip.scitation.org/doi/abs/10.1063/5.0081442" target="_blank" >https://aip.scitation.org/doi/abs/10.1063/5.0081442</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0081442" target="_blank" >10.1063/5.0081442</a>
Alternative languages
Result language
angličtina
Original language name
Wavelet Method for Sensitivity Analysis of European Options under Merton Jump-Diffusion Model
Original language description
The paper is concerned with the valuation of European option prices and Greeks under the Merton jump-diffusion model. This model is represented by the nonstationary integro-differential equation with a degenerate elliptic differential operator. The Galerkin method with cubic spline wavelets is employed for spatial discretization combined with the Crank-Nicolson scheme and Richardson extrapolation for time discretization. This method provides many advantages, such as sparse and uniformly conditioned discretization matrices, high-order convergence, and a small number of parameters representing the solution with the desired accuracy. Numerical experiments are presented for the European vanilla put option to illustrate the efficiency and applicability of the proposed scheme.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings
ISBN
978-073544182-8
ISSN
0094243X
e-ISSN
—
Number of pages
4
Pages from-to
—
Publisher name
American Institute of Physics Inc.
Place of publication
New York
Event location
Rhodes
Event date
Jan 1, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—