European Option Pricing under the CGMY Model using the Discontinuous Galerkin Method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F22%3A00011946" target="_blank" >RIV/46747885:24510/22:00011946 - isvavai.cz</a>
Result on the web
<a href="https://pubs.aip.org/aip/acp/article-abstract/2425/1/110005/2823442/European-option-pricing-under-the-CGMY-model-using" target="_blank" >https://pubs.aip.org/aip/acp/article-abstract/2425/1/110005/2823442/European-option-pricing-under-the-CGMY-model-using</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0081500" target="_blank" >10.1063/5.0081500</a>
Alternative languages
Result language
angličtina
Original language name
European Option Pricing under the CGMY Model using the Discontinuous Galerkin Method
Original language description
We present the discontinuous Galerkin method applied to valuation of European options assuming that the underlying follows a CGMY process. This special case of an infinite activity Lévy process has purely discontinuous paths with finite and/or infinite variation with respect to the density of Lévy measure. The corresponding CGMY model was proposed as an extension of geometric Brownian motion to overcome some of the limitations of the Black-Scholes approach. The evolution of the option prices under this model can be expressed in the form of a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the pricing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme. The special attention is paid to the proper discretization of jump components. The whole procedure is accompanied with preliminary practical results compared to reference values.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings
ISBN
—
ISSN
0094-243X
e-ISSN
—
Number of pages
4
Pages from-to
—
Publisher name
American Institute of Physics Inc.
Place of publication
Melville, NY
Event location
Rhodes
Event date
Jan 1, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—