All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Numerical Pricing of European Options Under the Double Exponential Jump-Diffusion Model With Stochastic Volatility

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F23%3A00011945" target="_blank" >RIV/46747885:24510/23:00011945 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.aip.org/aip/acp/article-abstract/2849/1/090001/2909004/Numerical-pricing-of-European-options-under-the" target="_blank" >https://pubs.aip.org/aip/acp/article-abstract/2849/1/090001/2909004/Numerical-pricing-of-European-options-under-the</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0163421" target="_blank" >10.1063/5.0163421</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Numerical Pricing of European Options Under the Double Exponential Jump-Diffusion Model With Stochastic Volatility

  • Original language description

    Stochastic volatility models with jumps generalize the classical Black-Scholes framework to capture more properly the real world features of option contracts. The extension is performed by incorporating jumps and a stochastic nature of volatility of asset returns into the dynamics of underlying asset prices. In this paper, we focus on pricing of European-style options under the model that combines the Heston stochastic volatility model with the Kou-type double exponential jumps in the underlying prices. As a result, the pricing function is governed by a partial-integro differential equation having the price of the underlying asset and its variance as spatial variables. Moreover, a presence of the non-local operator arising from jumps increases the complexity of the problem. Therefore, to improve the numerical pricing process we solve the relevant pricing equation by a discontinuous Galerkin approach with a semi-implicit time stepping scheme, where the differential operator is treated implicitly while the integral one explicitly by a composite trapezoidal rule. Finally, the numerical results demonstrate the capability of the numerical approach presented within the simple experiments.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIP Conference Proceedings

  • ISBN

  • ISSN

    0094-243X

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    American Institute of Physics Inc.

  • Place of publication

    Melville, NY

  • Event location

    Rhodes

  • Event date

    Jan 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article