Numerical Pricing of European Options Under the Double Exponential Jump-Diffusion Model With Stochastic Volatility
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F23%3A00011945" target="_blank" >RIV/46747885:24510/23:00011945 - isvavai.cz</a>
Result on the web
<a href="https://pubs.aip.org/aip/acp/article-abstract/2849/1/090001/2909004/Numerical-pricing-of-European-options-under-the" target="_blank" >https://pubs.aip.org/aip/acp/article-abstract/2849/1/090001/2909004/Numerical-pricing-of-European-options-under-the</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0163421" target="_blank" >10.1063/5.0163421</a>
Alternative languages
Result language
angličtina
Original language name
Numerical Pricing of European Options Under the Double Exponential Jump-Diffusion Model With Stochastic Volatility
Original language description
Stochastic volatility models with jumps generalize the classical Black-Scholes framework to capture more properly the real world features of option contracts. The extension is performed by incorporating jumps and a stochastic nature of volatility of asset returns into the dynamics of underlying asset prices. In this paper, we focus on pricing of European-style options under the model that combines the Heston stochastic volatility model with the Kou-type double exponential jumps in the underlying prices. As a result, the pricing function is governed by a partial-integro differential equation having the price of the underlying asset and its variance as spatial variables. Moreover, a presence of the non-local operator arising from jumps increases the complexity of the problem. Therefore, to improve the numerical pricing process we solve the relevant pricing equation by a discontinuous Galerkin approach with a semi-implicit time stepping scheme, where the differential operator is treated implicitly while the integral one explicitly by a composite trapezoidal rule. Finally, the numerical results demonstrate the capability of the numerical approach presented within the simple experiments.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings
ISBN
—
ISSN
0094-243X
e-ISSN
—
Number of pages
4
Pages from-to
—
Publisher name
American Institute of Physics Inc.
Place of publication
Melville, NY
Event location
Rhodes
Event date
Jan 1, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—