Option Pricing under the Bates Model Using the Discontinuous Galerkin Method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F22%3A10250544" target="_blank" >RIV/61989100:27510/22:10250544 - isvavai.cz</a>
Alternative codes found
RIV/46747885:24510/22:00011947
Result on the web
<a href="https://aip.scitation.org/toc/apc/2505/1?windowStart=50&size=50" target="_blank" >https://aip.scitation.org/toc/apc/2505/1?windowStart=50&size=50</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0100665" target="_blank" >10.1063/5.0100665</a>
Alternative languages
Result language
angličtina
Original language name
Option Pricing under the Bates Model Using the Discontinuous Galerkin Method
Original language description
Stochastic volatility models with jumps generalize the classical Black-Scholes framework to capture more properly the real world features of option contracts. The extension is performed by incorporating jumps and a stochastic nature of volatility of asset returns into the dynamics of underlying asset prices. In this paper, we focus on pricing of European-style options under the Bates model that combines the Merton jump-diffusion model with a stochastic volatility proposed by Heston. As a result, the pricing function is governed by a partial-integro differential equation with two spatial variables, specifically, the price of the underlying asset and its variance. Moreover, the simultaneous presence of the non-local integral term arising from jumps increases the complexity of the problem. Therefore, to improve the numerical valuation we solve the corresponding governing equation by a discontinuous Galerkin approach with a semi-implicit time stepping scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. Finally, the numerical results obtained are compared within the reference benchmark. (C) 2022 American Institute of Physics Inc.. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50200 - Economics and Business
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings. Volume 2505
ISBN
978-0-7354-4396-9
ISSN
0094-243X
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
AIP Publishing
Place of publication
Melville
Event location
Sofie
Event date
Jun 7, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—