Generalization of Simson–Wallace theorem: planar and spatial formulation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F23%3A00012041" target="_blank" >RIV/46747885:24510/23:00012041 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12410/23:43905660
Result on the web
<a href="https://link.springer.com/article/10.1007/s00022-022-00665-z" target="_blank" >https://link.springer.com/article/10.1007/s00022-022-00665-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00022-022-00665-z" target="_blank" >10.1007/s00022-022-00665-z</a>
Alternative languages
Result language
angličtina
Original language name
Generalization of Simson–Wallace theorem: planar and spatial formulation
Original language description
The paper studies a problem that represents a natural spatial generalization of the well-known Simson–Wallace theorem: Let four skew lines parallel to a fixed plane be given. Determine the locus of the point P in space so that the reflections of P in the given lines are coplanar. The result was very surprising for us — we get a cylinder of revolution. By orthogonal projection onto the given plane, the problem is reformulated as a planar one and subsequently solved synthetically. This solution turns out to have many properties in common with the classical Simson–Wallace theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry
ISSN
0047-2468
e-ISSN
—
Volume of the periodical
114
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
—
UT code for WoS article
000925723900001
EID of the result in the Scopus database
2-s2.0-85147503337