An elementary proof of Marcellini Sbordone semicontinuity theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F23%3A00012106" target="_blank" >RIV/46747885:24510/23:00012106 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12410/23:43906883
Result on the web
<a href="https://www.kybernetika.cz/content/2023/5/723" target="_blank" >https://www.kybernetika.cz/content/2023/5/723</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2023-5-0723" target="_blank" >10.14736/kyb-2023-5-0723</a>
Alternative languages
Result language
angličtina
Original language name
An elementary proof of Marcellini Sbordone semicontinuity theorem
Original language description
The weak lower semicontinuity of the functional F(u) = f (x, u, backward difference u) dx omega is a classical topic that was studied thoroughly. It was shown that if the function f is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on W1,P(omega). However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
KYBERNETIKA
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
59
Issue of the periodical within the volume
5
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
14
Pages from-to
723-736
UT code for WoS article
001162718600002
EID of the result in the Scopus database
—