A-quasiconvexity at the boundary and weak lower semicontinuity of integral functionals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00470210" target="_blank" >RIV/67985556:_____/17:00470210 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21110/17:00315656
Result on the web
<a href="http://dx.doi.org/10.1515/acv-2015-0009" target="_blank" >http://dx.doi.org/10.1515/acv-2015-0009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/acv-2015-0009" target="_blank" >10.1515/acv-2015-0009</a>
Alternative languages
Result language
angličtina
Original language name
A-quasiconvexity at the boundary and weak lower semicontinuity of integral functionals
Original language description
We state necessary and sufficient conditions for weak lower semicontinuity of integral functionals of the form u bar right arrow integral(Omega) h(x, u(x)) dx, where h is continuous and possesses a positively p-homogeneous recession function, p > 1, and u is an element of L-p(Omega, R-m) lives in the kernel of a constant-rank first-order differential operator A which admits an extension property. In the special case A = curl, apart from the quasiconvexity of the integrand, the recession function's quasiconvexity at the boundary in the sense of Ball and Marsden is known to play a crucial role. Our newly defined notions of A-quasiconvexity at the boundary, generalize this result. Moreover, we give an equivalent condition for the weak lower semicontinuity of the above functional along sequences weakly converging in L-p(Omega, R-m) and approaching the kernel of A even if A does not have the extension property.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Calculus of Variations
ISSN
1864-8258
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
49-67
UT code for WoS article
000391557700003
EID of the result in the Scopus database
2-s2.0-85013656827