All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Landesman - Lazer type conditions and quasilinear elliptic equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F02%3A00006687" target="_blank" >RIV/61989100:27240/02:00006687 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Landesman - Lazer type conditions and quasilinear elliptic equations

  • Original language description

    We study the existence of the weak solutions of nonlinear boundary value problem $$left{begin{array}{rcl} -Delta _p u & = & lambda |u|^{p-2} u +g(u)-h(x)hbox{ in } Omega, \u & = & 0 hbox{ on } partialOmega , end{array}right.$$ where $Omegasubset R ^N $ is a smooth bounded domain, $N geq 1$, $p>1$, $g: R to R $ is continuous function, $hin L^{p'}(Omega ) (p' =frac{p}{p-1} )$, $Delta _p$ is the $p$-Laplacian, i.e. $Delta _p u =text{div} (|nabla u |^{p-2} nabla u )$ and $lambdainR$. Our sufficient conditions gene-ra-li-ze all previously published results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F00%2F0376" target="_blank" >GA201/00/0376: Non-linear boundary value problems-existence and multiplicity results bifurcations</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Equadiff 10

  • ISBN

    80-210-2809-2

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    45-51

  • Publisher name

    Matematický ústav AV ČR

  • Place of publication

    Praha

  • Event location

    Praha

  • Event date

    Aug 27, 2002

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article