Landesman - Lazer type conditions and quasilinear elliptic equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F02%3A00006687" target="_blank" >RIV/61989100:27240/02:00006687 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Landesman - Lazer type conditions and quasilinear elliptic equations
Original language description
We study the existence of the weak solutions of nonlinear boundary value problem $$left{begin{array}{rcl} -Delta _p u & = & lambda |u|^{p-2} u +g(u)-h(x)hbox{ in } Omega, \u & = & 0 hbox{ on } partialOmega , end{array}right.$$ where $Omegasubset R ^N $ is a smooth bounded domain, $N geq 1$, $p>1$, $g: R to R $ is continuous function, $hin L^{p'}(Omega ) (p' =frac{p}{p-1} )$, $Delta _p$ is the $p$-Laplacian, i.e. $Delta _p u =text{div} (|nabla u |^{p-2} nabla u )$ and $lambdainR$. Our sufficient conditions gene-ra-li-ze all previously published results.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F00%2F0376" target="_blank" >GA201/00/0376: Non-linear boundary value problems-existence and multiplicity results bifurcations</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Equadiff 10
ISBN
80-210-2809-2
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
45-51
Publisher name
Matematický ústav AV ČR
Place of publication
Praha
Event location
Praha
Event date
Aug 27, 2002
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—