Vehicle-Assisted Techniques for Health Monitoring of Bridges
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F20%3A00007711" target="_blank" >RIV/46747885:24620/20:00007711 - isvavai.cz</a>
Result on the web
<a href="http://doi.org/10.3390/s20123460" target="_blank" >http://doi.org/10.3390/s20123460</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s20123460" target="_blank" >10.3390/s20123460</a>
Alternative languages
Result language
angličtina
Original language name
Vehicle-Assisted Techniques for Health Monitoring of Bridges
Original language description
Bridges are designed to withstand different types of loads, including dead, live, environmental, and occasional loads during their service period. Moving vehicles are the main source of the applied live load on bridges. The applied load to highway bridges depends on several traffic parameters such as weight of vehicles, axle load, configuration of axles, position of vehicles on the bridge, number of vehicles, direction, and vehicle’s speed. The estimation of traffic loadings on bridges are generally notional and, consequently, can be excessively conservative. Hence, accurate prediction of the in-service performance of a bridge structure is very desirable and great savings can be achieved through the accurate assessment of the applied traffic load in existing bridges. In this paper, a review is conducted on conventional vehicle-based health monitoring methods used for bridges. Vision-based, weigh in motion (WIM), bridge weigh in motion (BWIM), drive-by and vehicle bridge interaction (VBI)-based models are the methods that are generally used in the structural health monitoring (SHM) of bridges. The performance of vehicle-assisted methods is studied and suggestions for future work in this area are addressed, including alleviating the downsides of each approach to disentangle the complexities, and adopting intelligent and autonomous vehicle-assisted methods for health monitoring of bridges.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
21100 - Other engineering and technologies
Result continuities
Project
<a href="/en/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modular platform for autonomous chassis of specialized electric vehicles for freight and equipment transportation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sensors
ISSN
1424-8220
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
12
Country of publishing house
CH - SWITZERLAND
Number of pages
29
Pages from-to
—
UT code for WoS article
000554724500001
EID of the result in the Scopus database
—