All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Stastistical Models and Granular Soft RBF Neural Network for Malaysia KLCI Prediction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F16%3AN0000107" target="_blank" >RIV/47813059:19240/16:N0000107 - isvavai.cz</a>

  • Result on the web

    <a href="http://itise.ugr.es/proceedings2016/Proceedings_ITISE2016.pdf" target="_blank" >http://itise.ugr.es/proceedings2016/Proceedings_ITISE2016.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Stastistical Models and Granular Soft RBF Neural Network for Malaysia KLCI Prediction

  • Original language description

    Two novel forecasting models are introduced to predict the data of Malaysia KLCI. One of them is based on Box-Jenkins methodology where the asymmetric models, i.e. EGARCH and PGARCH models were used to form the random component for ARIMA model. The other forecasting model is a soft RBF neural network with cloud Gaussian activation function in hidden layer neurons. The forecast accuracy of both models is compared by using statistical summary measures of model´s accuracy. The accuracy level of the proposed soft neural network is better than the ARIMA/PGARCH model developed by most available statistical techniques. We found that asymmetric model with GED errors provide a better prediction than with Student´s t or normal errors one. We also discuss certain management aspect of proposed forecasting models by their use in management information systems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings ITISE 2016

  • ISBN

    978-84-16478-93-4

  • ISSN

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    530-540

  • Publisher name

    Neuveden

  • Place of publication

    Neuveden

  • Event location

    Granada

  • Event date

    Jun 27, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article