All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Statistical Models and Granular Soft RBF Neural Network for Malaysia KLCI Price Index Prediction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F17%3AA0000125" target="_blank" >RIV/47813059:19240/17:A0000125 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-55789-2_28" target="_blank" >http://dx.doi.org/10.1007/978-3-319-55789-2_28</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-55789-2_28" target="_blank" >10.1007/978-3-319-55789-2_28</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Statistical Models and Granular Soft RBF Neural Network for Malaysia KLCI Price Index Prediction

  • Original language description

    Two novel forecasting models are introduced to predict the data of Malaysia KLCI price index. One of them is based on Box-Jenkins methodology where the asymmetric models, i.e. EGARCH and PGARCH models were used to form the random component for ARIMA model. The other forecasting model is a soft RBF neural network with cloud Gaussian activation function in hidden layer neurons. The forecast accuracy of both models is compared by using statistical summary measures of model’s accuracy. The accuracy levels of the proposed soft neural network are better than the ARIMA/PGARCH model developed by most available statistical techniques. We found that asymmetric model with GED errors provide better predictions than with Student’s t or normal errors one. We also discuss a certain management aspect of proposed forecasting models by their use in management information systems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Time Series Analysis and Forecasting: Selected Contributions from ITISE 2016

  • ISBN

    9783319557892

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    401-412

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Granada; Spain

  • Event date

    Jan 1, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article