Can Pourciau's open mapping theorem be derived from Clarke's inverse mapping theorem easily?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F21%3AA0000184" target="_blank" >RIV/47813059:19520/21:A0000184 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/21:00537714
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0022247X20310210" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0022247X20310210</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2020.124858" target="_blank" >10.1016/j.jmaa.2020.124858</a>
Alternative languages
Result language
angličtina
Original language name
Can Pourciau's open mapping theorem be derived from Clarke's inverse mapping theorem easily?
Original language description
We discuss the possibility of deriving Pourciau's open mapping theorem from Clarke's inverse mapping theorem. We construct a Lipschitzian mapping g:ℝ³→ℝ² such that its Clarke generalized Jacobian ∂g(0) at the origin consists of 2×3 matrices of full rank, yet it is not possible to find a row vector such that the matrices augmented by the row vector are all of rank 3. Additionally, it is not possible to find any two-dimensional subspace 0∈W⊂ℝ³ such that the mapping W∋x↦Mx∈ℝ² is surjective for every matrix M∈∂g(0). We thus conclude that Pourciau’s open mapping theorem cannot be derived from Clarke’s inverse mapping theorem easily in general.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
497
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
1-13
UT code for WoS article
000612183800001
EID of the result in the Scopus database
2-s2.0-85098859814