All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Every compact convex subset of matrices is the Clarke Jacobian of some Lipschitzian mapping

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F21%3AA0000188" target="_blank" >RIV/47813059:19520/21:A0000188 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985840:_____/21:00545836

  • Result on the web

    <a href="https://www.ams.org/journals/proc/2021-149-11/S0002-9939-2021-15571-8/" target="_blank" >https://www.ams.org/journals/proc/2021-149-11/S0002-9939-2021-15571-8/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/15571" target="_blank" >10.1090/proc/15571</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Every compact convex subset of matrices is the Clarke Jacobian of some Lipschitzian mapping

  • Original language description

    We prove that every non-empty compact convex subset of m×n matrices is the Clarke Jacobian of a Lipschitzian mapping from ℝ^n to ℝ^m. In detail: Let M be any non-empty compact convex subset of ℝ^{m×n}. We construct a Lipschitzian mapping g:ℝ^n→ℝ^m such that its Clarke generalized Jacobian ∂g(0) at the origin is equal to the given set (∂g(0)=M). In other words, every non-empty compact convex subset of m×n matrices is the Clarke Jacobian of some Lipschitzian mapping from ℝ^n to ℝ^m.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

  • Volume of the periodical

    149

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    4771-4779

  • UT code for WoS article

    000695492700021

  • EID of the result in the Scopus database

    2-s2.0-85114824488