All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generalized Hukuhara-Clarke Derivative of Interval-valued Functions and its Properties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F21%3AA0000257" target="_blank" >RIV/47813059:19520/21:A0000257 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs00500-021-06251-w/metrics" target="_blank" >https://link.springer.com/article/10.1007%2Fs00500-021-06251-w/metrics</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00500-021-06251-w" target="_blank" >10.1007/s00500-021-06251-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generalized Hukuhara-Clarke Derivative of Interval-valued Functions and its Properties

  • Original language description

    This paper is devoted to the study of gH-Clarke derivative for interval-valued functions. To find properties of the gH-Clarke derivative, the concepts of limit superior, limit inferior, and sublinear interval-valued functions are studied in the sequel. It is proved that the upper gH-Clarke derivative of a gH-Lipschitz continuous interval-valued function (IVF) always exists. For a convex and gH-Lipschitz IVF, the upper gH-Clarke derivative is found to be identical with the gH-directional derivative. It is observed that the upper gH-Clarke derivative is a sublinear IVF. Several numerical examples are provided to support the entire study.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Soft Computing

  • ISSN

    1432-7643

  • e-ISSN

    1433-7479

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    23

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    14629-14643

  • UT code for WoS article

    000703515700005

  • EID of the result in the Scopus database