Generalized Hukuhara-Clarke Derivative of Interval-valued Functions and its Properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F21%3AA0000257" target="_blank" >RIV/47813059:19520/21:A0000257 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs00500-021-06251-w/metrics" target="_blank" >https://link.springer.com/article/10.1007%2Fs00500-021-06251-w/metrics</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-021-06251-w" target="_blank" >10.1007/s00500-021-06251-w</a>
Alternative languages
Result language
angličtina
Original language name
Generalized Hukuhara-Clarke Derivative of Interval-valued Functions and its Properties
Original language description
This paper is devoted to the study of gH-Clarke derivative for interval-valued functions. To find properties of the gH-Clarke derivative, the concepts of limit superior, limit inferior, and sublinear interval-valued functions are studied in the sequel. It is proved that the upper gH-Clarke derivative of a gH-Lipschitz continuous interval-valued function (IVF) always exists. For a convex and gH-Lipschitz IVF, the upper gH-Clarke derivative is found to be identical with the gH-directional derivative. It is observed that the upper gH-Clarke derivative is a sublinear IVF. Several numerical examples are provided to support the entire study.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing
ISSN
1432-7643
e-ISSN
1433-7479
Volume of the periodical
2021
Issue of the periodical within the volume
23
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
14629-14643
UT code for WoS article
000703515700005
EID of the result in the Scopus database
—