Generalized-Hukuhara subdifferential analysis and its application in nonconvex composite interval optimization problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73616918" target="_blank" >RIV/61989592:15310/23:73616918 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0020025522014438" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025522014438</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2022.11.133" target="_blank" >10.1016/j.ins.2022.11.133</a>
Alternative languages
Result language
angličtina
Original language name
Generalized-Hukuhara subdifferential analysis and its application in nonconvex composite interval optimization problems
Original language description
In this article, we study calculus for gH-subdifferential of convex interval-valued functions (IVFs) and apply it in a nonconvex composite model of an interval optimization problem (IOP). Towards this, we define convexity, convex hull, closedness, and boundedness of a set of interval vectors. In identifying the closedness of the convex hull of a set of interval vectors and the union of closed sets, we analyze the convergence of the sequence of interval vectors. We prove a relation on the gH-directional derivative of the maximum of finitely many comparable IVFs. With the help of existing calculus on the gH-subdifferential of an IVF, we derive a Fritz-John-type and a KKT-type efficiency condition for weak efficient solutions of IOPs. In the sequel, we analyze the supremum and infimum of a set of intervals. Further, we report a characterization of the weak efficient solutions of nonconvex composite IOPs by applying the proposed concepts. The whole analysis is supported by illustrative examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INFORMATION SCIENCES
ISSN
0020-0255
e-ISSN
1872-6291
Volume of the periodical
622
Issue of the periodical within the volume
APR
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
771-793
UT code for WoS article
000900836600006
EID of the result in the Scopus database
2-s2.0-85145261326