All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ERP SYSTÉM JAKO ZDROJ DAT PRO PREDIKCE PROVOZNÍCH UKAZATELŮ ZA VYUŽITÍ METOD UMĚLÉ INTELIGENCE

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F23%3AA0000418" target="_blank" >RIV/47813059:19520/23:A0000418 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    ERP SYSTÉM JAKO ZDROJ DAT PRO PREDIKCE PROVOZNÍCH UKAZATELŮ ZA VYUŽITÍ METOD UMĚLÉ INTELIGENCE

  • Original language description

    The article shows an overview of the standard functions of the ERP (Enterprise Resource Planning) information system in manufacturing companies and deals with the ERP system data for the optimization of reliability, management and product quality process. A comprehensive approach to data collection, processing and their storage in the ERP system (cloud storage, data warehouses) is necessary for successful management of the production process. By using advanced statistical and artificial intelligence methods (neural networks, trees, logistic regression), it is possible to analyze the data and obtain additional knowledge and dependencies in the data. The application part of the article presents the prediction of reliability indicators. From the ERP system database, the data set of a time to failure has been obtained. This data for the creation of a parametric model, based on Weibull distribution, has been used. The article demonstrates the application of artificial neural networks for the prediction of reliability indicators, and a parametric model based on the Weibull distribution has been created from the input data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    4th International conference on Decision making for Small and Medium-Sized Enterprises. Conference proceedings.

  • ISBN

    9788075105547

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    11-17

  • Publisher name

    Silesian University in Opava, School of Business Administration in Karviná

  • Place of publication

    Karviná

  • Event location

    Petrovice u Karviné, Czech Republic

  • Event date

    May 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article