On regularization of variational problems in first-order field theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F01%3A00000059" target="_blank" >RIV/47813059:19610/01:00000059 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On regularization of variational problems in first-order field theory
Original language description
Standard Hamiltonian formulation of field theory is founded upon the Poicaré-Cartan form. Accordingly, a first-order Lagrangian L is called regular if $det ({{pr^2 L} over {pr y^sigma_i pr y^nu_j}}) ne 0$; in this case the Hamilton equations areequivalent with the Euler-Lagrange equations. Keeping the requirement on equivalence of the Hamilton and Euler-Lagrange equations as a (geometric) definition of regularity, and considering more general Lepagean equivalents of a Lagrangian than the Poincaré-Cartan equivalent, we obtain a regularity condition, depending not only on a Lagrangian but also on 2-contact parts of its Lepagean equivalents.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Rendiconti Circcolo Matematico di Palermo, Serie II Supplemento
ISSN
ISSN009-725X
e-ISSN
—
Volume of the periodical
2001
Issue of the periodical within the volume
66
Country of publishing house
IT - ITALY
Number of pages
8
Pages from-to
133-140
UT code for WoS article
—
EID of the result in the Scopus database
—