Hamiltonian field theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F02%3A00000084" target="_blank" >RIV/47813059:19610/02:00000084 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hamiltonian field theory
Original language description
In this paper, a general Hamiltonian theory for Lagrangian systems on fibred manifolds is proposed. The concept of a Lepagean (n+1)-form is defined, generalizing Krupka's concept of a Lepagean n-form. Lepagean (n+1)-forms are used to study Lagrangian andHamiltonian systems. Innovations and new results concern the following: a Lagrangian system is considered as an equivalence class of local Lagrangians; a Hamiltonian system is associated with an Euler-Lagrange form (not with a particular Lagrangian); Hamilton equations are based upon a Lepagean (n+1)-form, and cover Hamilton-De Donder equations as a special case. First-order Hamiltonian systems, namely those carying higher-degree contact components of the corresponding Lepagean forms, are studied in detail. The presented geometric setting leads to a new understanding of the concepts of regularity and Legendre transformation in the calculus of variations, relating them directly to the properties of the arising exterior differential syste
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F00%2F0724" target="_blank" >GA201/00/0724: Geometric analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
ISSN0393-0440
e-ISSN
—
Volume of the periodical
43
Issue of the periodical within the volume
2
Country of publishing house
IT - ITALY
Number of pages
40
Pages from-to
93-132
UT code for WoS article
—
EID of the result in the Scopus database
—