All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hamiltonian field theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F02%3A00000084" target="_blank" >RIV/47813059:19610/02:00000084 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hamiltonian field theory

  • Original language description

    In this paper, a general Hamiltonian theory for Lagrangian systems on fibred manifolds is proposed. The concept of a Lepagean (n+1)-form is defined, generalizing Krupka's concept of a Lepagean n-form. Lepagean (n+1)-forms are used to study Lagrangian andHamiltonian systems. Innovations and new results concern the following: a Lagrangian system is considered as an equivalence class of local Lagrangians; a Hamiltonian system is associated with an Euler-Lagrange form (not with a particular Lagrangian); Hamilton equations are based upon a Lepagean (n+1)-form, and cover Hamilton-De Donder equations as a special case. First-order Hamiltonian systems, namely those carying higher-degree contact components of the corresponding Lepagean forms, are studied in detail. The presented geometric setting leads to a new understanding of the concepts of regularity and Legendre transformation in the calculus of variations, relating them directly to the properties of the arising exterior differential syste

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F00%2F0724" target="_blank" >GA201/00/0724: Geometric analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Geometry and Physics

  • ISSN

    ISSN0393-0440

  • e-ISSN

  • Volume of the periodical

    43

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    IT - ITALY

  • Number of pages

    40

  • Pages from-to

    93-132

  • UT code for WoS article

  • EID of the result in the Scopus database