On a generalized Dhombres functional equation II
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F02%3A00000092" target="_blank" >RIV/47813059:19610/02:00000092 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a generalized Dhombres functional equation II
Original language description
There is considered the functional equation f(xf(x))=g(f(x)), where g:J->J is given continuous, strictly increasing functions on an open interval J in R+, and f:R+ ->J is an unknown function, and some properties of continuous solutions are given. In thepresent paper we give a characterization of the equations which have all continuous solution monotone. In particulat, all continuous solutions are monotoneif either (i) 1 is an end-point of J and J contains no fixed point of phi or (ii) 1 in J and J contains no fixed points different from 1.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F00%2F0859" target="_blank" >GA201/00/0859: Dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica
ISSN
ISSN0862-7959
e-ISSN
—
Volume of the periodical
127
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
9
Pages from-to
547-555
UT code for WoS article
—
EID of the result in the Scopus database
—