Solution of a problem of S. Marcus concerning J-convex functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F02%3A00000094" target="_blank" >RIV/47813059:19610/02:00000094 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Solution of a problem of S. Marcus concerning J-convex functions
Original language description
This paper is devoted to the problem of characterizing the class $scr S$ of stationary sets for $J$-convex functions $DeltatoBbb R$, where $Delta$ is a convex open subset of ${Bbb R}^n$ We prove, among other things, that a set $T$ belongs to the class $scr S$ if and only if $T$ satisfies two conditions: the closure of the convex hull of $T$ in the relative topology is the whole set $Delta$, and each $J$-convex function bounded above on $T$ is continuous.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Aequationes Mathematicae
ISSN
ISSN0001-9054
e-ISSN
—
Volume of the periodical
63
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
4
Pages from-to
136-139
UT code for WoS article
—
EID of the result in the Scopus database
—