Uniqueness theorem for a Cauchy problem with hysteresis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F02%3A00000095" target="_blank" >RIV/47813059:19610/02:00000095 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Uniqueness theorem for a Cauchy problem with hysteresis
Original language description
The Cauchy problem for an ordinary differential equation coupled with hysteresis operator is studied. Under physically reasonable assumptions on the forcing term, uniqueness of solutions is shown without assuming Lipschitz continuity of the hysteresis curves. The result is true for any kind of hysteresis operators with monotone curves of motion.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F97%2F0001" target="_blank" >GA201/97/0001: Dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
ISSN0002-9939
e-ISSN
—
Volume of the periodical
127
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
3527-3532
UT code for WoS article
—
EID of the result in the Scopus database
—