All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Uniqueness of limit cycle in the predator prey-system with symmetric prey isocline

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F02%3A00000097" target="_blank" >RIV/47813059:19610/02:00000097 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Uniqueness of limit cycle in the predator prey-system with symmetric prey isocline

  • Original language description

    We consider a special form of the Gause model of interactions between predator and prey populations. Using the ideas of Cheng, we prove the uniqueness of the limit cycle for more general systems, satisfying some additional conditions. These include alsoa condition due to Kuang and Freedman. Moreover, in this paper it is shown that the similar generalization of Cheng's uniqueness proof by Conway and Smoller is not correct.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F97%2F0001" target="_blank" >GA201/97/0001: Dynamical systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Biosciences

  • ISSN

    ISSN0025-5564

  • e-ISSN

  • Volume of the periodical

    164

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    203-215

  • UT code for WoS article

  • EID of the result in the Scopus database