Scrambled sets for transitive maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F02%3A00000125" target="_blank" >RIV/47813059:19610/02:00000125 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Scrambled sets for transitive maps
Original language description
We deal with two types of chaos: the well known chaos in the sense of Li and Yorke and $omega$-chaos which was introduced in [S. Li, {it Trans. Amer. Math. Soc.} 339 (1993)]. In this paper we prove that every bitransitive map $f in C(I,I)$ is conjugate to $g in C(I,I)$, which satisfies the following conditions, $1.$ there is a $c$-dense $omega$-scrambled set for $g$, $2.$ there is an extremely LY-scrambled set for $g$ with full Lebesgue measure, $3.$ every $omega$-scrambled set of $g$ has zero Lebesgue measure.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F01%2FP134" target="_blank" >GP201/01/P134: Chaos in discrete dynamical systems</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Real Analysis Exchange
ISSN
ISSN0147-1937
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
808-80
UT code for WoS article
—
EID of the result in the Scopus database
—