Omega-chaos almost everywhere
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F03%3A00000114" target="_blank" >RIV/47813059:19610/03:00000114 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Omega-chaos almost everywhere
Original language description
Developping ideas of S. Li [Tran. Amer. Math. Soc. 301 (1993), 243--249] concerning the notion of $omega$-chaos we prove that any transitive continuous map $f$ of the interval is conjugate to a map $g$ of the interval which possesses an $omega$-scrambled set $S$ of full Lebesgue measure. Thus, for any distinct $x, y$ in $S$, $omega _g (x)capomega _g(y)$ is non-empty, and $omega _g(x)setminusomega _g(y)$ is uncountable. Similar results are known for continuous maps chaotic in the sense of Li andYorke.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems
ISSN
ISSN1078-0947
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
1323-132
UT code for WoS article
—
EID of the result in the Scopus database
—