All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A zero topological entropy map with recurrent points not $Fsb sigma$

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F03%3A00000121" target="_blank" >RIV/47813059:19610/03:00000121 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A zero topological entropy map with recurrent points not $Fsb sigma$

  • Original language description

    We show that there is a continuous map $chi$ of the unit interval into itself of type $2^infty$ which has a trajectory disjoint from the set $ operatorname{Rec}(chi )$ of recurrent points of $chi$, but contained in the closure of $ operatorname{Rec}(chi )$. In particular, $ operatorname{Rec}(chi )$ is not closed. A function $psi$ of type $2^infty$, with nonclosed set of recurrent points, was found by H. Chu and J. Xiong [Proc. Amer. Math. Soc. 97 (1986), 361-366]. However, there is no trajectory contained in $overline {operatorname{Rec} (psi)}setminus operatorname{Rec}(psi)$, since any point in $overline { operatorname{Rec}(psi)}$ is eventually mapped into $operatorname{Rec} (psi)$. Moreover, our construction is simpler. We use $chi$ to show that there is a continuous map of the interval of type $2^infty$ for which the set of recurrent points is not an $F_sigma$ set. This example disproves a conjecture of A. N. Sharkovsky-1989

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F00%2F0859" target="_blank" >GA201/00/0859: Dynamical systems</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2003

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    ISSN0002-9939

  • e-ISSN

  • Volume of the periodical

    131

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    2089-209

  • UT code for WoS article

  • EID of the result in the Scopus database