All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The converse problem for a generalized Dhombres functional equation

Result description

We consider the functional equation $f(xf(x))=varphi(f(x))$ where $varphi Jrightarrow J$ is a given homeomorphism of an open interval $Jsubset(0,infty)$ and $f (0,infty) rightarrow J$ is an unknown continuous function. A characterization of the class $Cal S(J,varphi)$ of continuous solutions $f$ is given in a series of papers by Kahlig and Smital 1998-2002, and in a recent paper by Reich et al. 2004, in the case when $varphi$ is increasing. In the present paper we solve the converse problem, for which continuous maps $f(0,infty)rightarrow J$, where $J$ is an interval, there is an increasing homeomorphism $varphi$ of $J$ such that $finCal S(J,varphi)$. We also show why the similar problem for decreasing $varphi$ is difficult.

Keywords

iterative functional equationequation of invariant curvesgeneral continuous solutionconverse problem

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    The converse problem for a generalized Dhombres functional equation

  • Original language description

    We consider the functional equation $f(xf(x))=varphi(f(x))$ where $varphi Jrightarrow J$ is a given homeomorphism of an open interval $Jsubset(0,infty)$ and $f (0,infty) rightarrow J$ is an unknown continuous function. A characterization of the class $Cal S(J,varphi)$ of continuous solutions $f$ is given in a series of papers by Kahlig and Smital 1998-2002, and in a recent paper by Reich et al. 2004, in the case when $varphi$ is increasing. In the present paper we solve the converse problem, for which continuous maps $f(0,infty)rightarrow J$, where $J$ is an interval, there is an increasing homeomorphism $varphi$ of $J$ such that $finCal S(J,varphi)$. We also show why the similar problem for decreasing $varphi$ is difficult.

  • Czech name

    Obrácený problém pro zobecněnou Dhombresovu funkcionální rovnici

  • Czech description

    Uvažujeme funkcionální rovnici $f(xf(x))=varphi(f(x))$ kde $varphi Jrightarrow J$ je daný homeomorfizmus otevřeného intervalu $Jsubset(0,infty)$ a $f (0,infty) rightarrow J$ je neznámá funkce. Charakterizac třídy $Cal S(J,varphi)$ spojitých řešení $f$ jlze najít v sérii prací Kahliga a Smítala 1988 - 2002 a v nedávné práci Reich et al. 2004 v případě, kdy $varphi$ je rostoucí. V této práci řešíme obrácený problém, která spojitá zobrazení $f (0,infty)rightarrow J$, kde $J$ je daný interval, existuje rostoucí homeomorfizmus $varphi$ z $J$ na $J$ tak, že $finCal S(J,varphi)$. Ukazujeme též, proč podobný problém s klesající funkcí $varphi$ je obtížný.

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematica Bohemica

  • ISSN

    ISSN0862-7959

  • e-ISSN

  • Volume of the periodical

    130

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    8

  • Pages from-to

    301-308

  • UT code for WoS article

  • EID of the result in the Scopus database

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BA - General mathematics

Year of implementation

2005