All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Li-Yorke sensitive minimal maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F06%3A%230000050" target="_blank" >RIV/47813059:19610/06:#0000050 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Li-Yorke sensitive minimal maps

  • Original language description

    Let $Q$ be the Cantor middle third set, and $S$ the circle, and let $tau :Qrightarrow Q$ be an adding machine (i.e., odometer). Let $X=Qtimes S$ be equipped with (a metric equivalent to) the Euclidean metric. We show that there are continuous triangular maps $F_i: Xrightarrow X$, $F_i: (x,y)mapsto (tau (x), g_i(x,y))$, $i=1,2$, with the following properties: Both $(X, F_1)$ and $(X, F_2)$ are minimal systems, without weak mixing factors (i.e., neither of them is semiconjugate to a weak mixing system). $(X, F_1)$ is spatio-temporally chaotic but not Li-Yorke sensitive. $(X,F_2)$ is Li-Yorke sensitive. This disproves conjectures of E. Akin and S. Kolyada [Li-Yorke sensitivity, {it Nonlinearity} 16 (2003), 1421--1433].

  • Czech name

    Li-Yorkova senzitivita minimálních funkcí

  • Czech description

    Nechť $Q$ je Cantorova množina, $S$ kružnice a $tau :QrightarrowQ$ je zobrazení adding machine. Na prostoru $X=Qtimes S$ uvažujme Euklidovu metriku. Ukážeme, že existují zobrazení $F_i:Xrightarrow X$, $F_i: (x,y)mapsto (tau (x), g_i(x,y))$, $i=1,2$s následujícími vlastnostmi: Oba systémy $(X, F_1)$ i $(X, F_2)$ jsou minimální bez slabě mixujícího faktoru (tzn. neexistuje semikonjugace do slabě mixujícího systému). $(X, F_1)$ je spatio-temporally chaotický, ale není Li-Yorkovsky senzitivní. $(X, F_2)$ je Li-Yorkovský senzitivní. Toto vyvrací hypotézy z článku od E. Akina a S. Kolyady [Li-Yorke sensitivity, {it Nonlinearity} 16 (2003), 1421--1433].

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F03%2F1153" target="_blank" >GA201/03/1153: Dynamical systems II.</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nonlinearity

  • ISSN

    0951-7715

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    517-529

  • UT code for WoS article

  • EID of the result in the Scopus database