Li-Yorke sensitive and weak mixing dynamical systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F18%3AA0000028" target="_blank" >RIV/47813059:19610/18:A0000028 - isvavai.cz</a>
Result on the web
<a href="https://www.tandfonline.com/doi/full/10.1080/10236198.2017.1304545" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10236198.2017.1304545</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2017.1304545" target="_blank" >10.1080/10236198.2017.1304545</a>
Alternative languages
Result language
angličtina
Original language name
Li-Yorke sensitive and weak mixing dynamical systems
Original language description
Akin and Kolyada in 2003 [E. Akin, S. Kolyada, Li–Yorke sensitivity, Nonlinearity 16 (2003), pp. 1421–1433] introduced the notion of Li–Yorke sensitivity. They proved that every weak mixing system (X, T), where X is a compact metric space and T a continuous map of X is Li–Yorke sensitive. An example of Li–Yorke sensitive system without weak mixing factors was given in [M. Čiklová, Li–Yorke sensitive minimal maps, Nonlinearity 19 (2006), pp. 517–529] (see also [M. Čiklová-Mlíchová, Li–Yorke sensitive minimal maps II, Nonlinearity 22 (2009), pp. 1569–1573]). In their paper, Akin and Kolyada conjectured that every minimal system with a weak mixing factor, is Li–Yorke sensitive. We provide arguments supporting this conjecture though the proof seems to be difficult.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
1563-5120
Volume of the periodical
24
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
667-674
UT code for WoS article
000427557900003
EID of the result in the Scopus database
2-s2.0-85016086074