Li-Yorke sensitive minimal maps II
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F09%3A%230000256" target="_blank" >RIV/47813059:19610/09:#0000256 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Li-Yorke sensitive minimal maps II
Original language description
In a previous paper (Čiklová 2006 Nonlinearity 19 517?29) a family of minimal, Li?Yorke sensitive dynamical systems (X, T) without weak mixing factors has been constructed, disproving a conjecture by Akin and Kolyada (2003 Nonlinearity 16 1421?33). In this article we show that, in addition, any system in the above-mentioned family has an almost one-to-one minimal extension which fails to be Li?Yorke sensitive. This disproves another conjecture by Akin and Kolyada.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F09%2FP198" target="_blank" >GP201/09/P198: Chaos in Discrete Dynamical Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
0951-7715
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
5
Pages from-to
—
UT code for WoS article
000266916100005
EID of the result in the Scopus database
—