Ramadanov conjecture and line bundles over compact Hermitian symmetric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F10%3A%230000265" target="_blank" >RIV/47813059:19610/10:#0000265 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Ramadanov conjecture and line bundles over compact Hermitian symmetric spaces
Original language description
We compute the Szego kernels of the unit circle bundles of homogeneous negative line bundles over a compact Hermitian symmetric space. We prove that their logarithmic terms vanish in all cases and, further, that the circle bundles are not diffeomorphic to the unit sphere in C-n for Grassmannian manifolds of higher ranks. In particular, they provide an infinite family of smoothly bounded strictly pseudoconvex domains on complex manifolds for which the logarithmic term in the Fefferman expansion of the Szego kernel vanishes but whose boundary is not diffeomorphic to the sphere (in fact, it is not even locally spherical). The analogous results for the Bergman kernel are also obtained.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0128" target="_blank" >GA201/06/0128: Methods of function theory and Banach algebras in operator theory III.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
—
Volume of the periodical
264
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
—
UT code for WoS article
000274386500008
EID of the result in the Scopus database
—