All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conservation laws and normal forms of evolution equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F10%3A%230000284" target="_blank" >RIV/47813059:19610/10:#0000284 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conservation laws and normal forms of evolution equations

  • Original language description

    We study local conservation laws for evolution equations in two independent variables. In particular, we present normal forms for the equations admitting one or two low-order conservation laws. Examples include Harry Dym equation, Korteweg-de Vries-typeequations, and Schwarzian KdV equation. It is also shown that for linear evolution equations all their conservation laws are (modulo trivial conserved vectors) at most quadratic in the dependent variable and its derivatives.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physics Letters A

  • ISSN

    0375-9601

  • e-ISSN

  • Volume of the periodical

    374

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

  • UT code for WoS article

    000277883400003

  • EID of the result in the Scopus database