All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generalized symmetries and conservation laws of (1+1)-dimensional Klein-Gordon equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F20%3AA0000080" target="_blank" >RIV/47813059:19610/20:A0000080 - isvavai.cz</a>

  • Result on the web

    <a href="https://aip.scitation.org/doi/10.1063/5.0003304" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0003304</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0003304" target="_blank" >10.1063/5.0003304</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generalized symmetries and conservation laws of (1+1)-dimensional Klein-Gordon equation

  • Original language description

    Using advantages of nonstandard computational techniques based on the light-cone variables, we explicitly find the algebra of generalized symmetries of the (1 + 1)-dimensional Klein-Gordon equation. This allows us to describe this algebra in terms of the universal enveloping algebra of the essential Lie invariance algebra of the Klein-Gordon equation. Then, we single out variational symmetries of the corresponding Lagrangian and compute the space of local conservation laws of this equation, which turns out to be generated, up to the action of generalized symmetries, by a single first-order conservation law. Moreover, for every conservation law, we find a conserved current of minimal order contained in this conservation law.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_027%2F0008521" target="_blank" >EF16_027/0008521: Support of International Mobility of Researchers on SU</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

    1089-7658

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    101515

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    „101515-1“-„101515-13“

  • UT code for WoS article

    000582910500001

  • EID of the result in the Scopus database

    2-s2.0-85095869771