Generalized symmetries and conservation laws of (1+1)-dimensional Klein-Gordon equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F20%3AA0000080" target="_blank" >RIV/47813059:19610/20:A0000080 - isvavai.cz</a>
Result on the web
<a href="https://aip.scitation.org/doi/10.1063/5.0003304" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0003304</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0003304" target="_blank" >10.1063/5.0003304</a>
Alternative languages
Result language
angličtina
Original language name
Generalized symmetries and conservation laws of (1+1)-dimensional Klein-Gordon equation
Original language description
Using advantages of nonstandard computational techniques based on the light-cone variables, we explicitly find the algebra of generalized symmetries of the (1 + 1)-dimensional Klein-Gordon equation. This allows us to describe this algebra in terms of the universal enveloping algebra of the essential Lie invariance algebra of the Klein-Gordon equation. Then, we single out variational symmetries of the corresponding Lagrangian and compute the space of local conservation laws of this equation, which turns out to be generated, up to the action of generalized symmetries, by a single first-order conservation law. Moreover, for every conservation law, we find a conserved current of minimal order contained in this conservation law.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_027%2F0008521" target="_blank" >EF16_027/0008521: Support of International Mobility of Researchers on SU</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
61
Issue of the periodical within the volume
101515
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
„101515-1“-„101515-13“
UT code for WoS article
000582910500001
EID of the result in the Scopus database
2-s2.0-85095869771