Generalized symmetries, conservation laws and Hamiltonian structures of an isothermal no-slip drift flux model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F20%3AA0000068" target="_blank" >RIV/47813059:19610/20:A0000068 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0167278920300506?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167278920300506?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2020.132546" target="_blank" >10.1016/j.physd.2020.132546</a>
Alternative languages
Result language
angličtina
Original language name
Generalized symmetries, conservation laws and Hamiltonian structures of an isothermal no-slip drift flux model
Original language description
We study the hydrodynamic-type system of differential equations modeling isothermal no-slip drift flux. Using the facts that the system is partially coupled and its subsystem reduces to the (1+1)-dimensional Klein-Gordon equation, we exhaustively describe generalized symmetries, cosymmetries and local conservation laws of this system. A generating set of local conservation laws under the action of generalized symmetries is proved to consist of two zeroth-order conservation laws. The subspace of translation-invariant conservation laws is singled out from the entire space of local conservation laws. We also find broad families of local recursion operators and a nonlocal recursion operator, and construct an infinite family of Hamiltonian structures involving an arbitrary function of a single argument. For each of the constructed Hamiltonian operators, we obtain the associated algebra of Hamiltonian symmetries.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physica D: Nonlinear Phenomena
ISSN
0167-2789
e-ISSN
1872-8022
Volume of the periodical
411
Issue of the periodical within the volume
132546
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
19
Pages from-to
„132546-1“-„132546-19“
UT code for WoS article
000558454900017
EID of the result in the Scopus database
2-s2.0-85086077115