All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generalized symmetries, conservation laws and Hamiltonian structures of an isothermal no-slip drift flux model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F20%3AA0000068" target="_blank" >RIV/47813059:19610/20:A0000068 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0167278920300506?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167278920300506?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.physd.2020.132546" target="_blank" >10.1016/j.physd.2020.132546</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generalized symmetries, conservation laws and Hamiltonian structures of an isothermal no-slip drift flux model

  • Original language description

    We study the hydrodynamic-type system of differential equations modeling isothermal no-slip drift flux. Using the facts that the system is partially coupled and its subsystem reduces to the (1+1)-dimensional Klein-Gordon equation, we exhaustively describe generalized symmetries, cosymmetries and local conservation laws of this system. A generating set of local conservation laws under the action of generalized symmetries is proved to consist of two zeroth-order conservation laws. The subspace of translation-invariant conservation laws is singled out from the entire space of local conservation laws. We also find broad families of local recursion operators and a nonlocal recursion operator, and construct an infinite family of Hamiltonian structures involving an arbitrary function of a single argument. For each of the constructed Hamiltonian operators, we obtain the associated algebra of Hamiltonian symmetries.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physica D: Nonlinear Phenomena

  • ISSN

    0167-2789

  • e-ISSN

    1872-8022

  • Volume of the periodical

    411

  • Issue of the periodical within the volume

    132546

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    19

  • Pages from-to

    „132546-1“-„132546-19“

  • UT code for WoS article

    000558454900017

  • EID of the result in the Scopus database

    2-s2.0-85086077115