Invariant solutions of supersymmetric nonlinear wave equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F11%3A00177307" target="_blank" >RIV/68407700:21340/11:00177307 - isvavai.cz</a>
Result on the web
<a href="http://iopscience.iop.org/1751-8121/44/8/085204" target="_blank" >http://iopscience.iop.org/1751-8121/44/8/085204</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/44/8/085204" target="_blank" >10.1088/1751-8113/44/8/085204</a>
Alternative languages
Result language
angličtina
Original language name
Invariant solutions of supersymmetric nonlinear wave equations
Original language description
Systematic group-theoretical analyses of two supersymmetric nonlinear wave equations, namely the supersymmetric sinh-Gordon and polynomial Klein-Gordon equations, are performed. In each case, a generalization of the method of prolongations is used to determine the Lie superalgebra of symmetries, and the method of symmetry reduction is applied in order to obtain invariant solutions of the supersymmetric equations under consideration. In the case of the supersymmetric sinh-Gordon equation, the results arecompared with those previously found for the supersymmetric sine-Gordon equation. The presence of non-standard invariants is discussed for the supersymmetric sinh-Gordon and polynomial Klein-Gordon equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
44
Issue of the periodical within the volume
8
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
1-22
UT code for WoS article
000287138400006
EID of the result in the Scopus database
—