Invariant Solutions of the Supersymmetric sine-Gordon Equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F09%3A00156893" target="_blank" >RIV/68407700:21340/09:00156893 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Invariant Solutions of the Supersymmetric sine-Gordon Equation
Original language description
A comprehensive symmetry analysis of the N=1 supersymmetric sine-Gordon equation is performed. Two different forms of the supersymmetric system are considered. We begin by studying a system of partial differential equations corresponding to the coefficients of the various powers of the anticommuting independent variables. Next, we consider the super-sine-Gordon equation expressed in terms of a bosonic superfield involving anticommuting independent variables. In each case, a Lie (super)algebra of symmetries is determined and a classification of all subgroups having generic orbits of codimension 1 in the space of independent variables is performed. The method of symmetry reduction is systematically applied in order to derive invariant solutions of the supersymmetric model. Several types of algebraic, hyperbolic and doubly periodic solutions are obtained in explicit form.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
33
Country of publishing house
GB - UNITED KINGDOM
Number of pages
23
Pages from-to
—
UT code for WoS article
000268480000012
EID of the result in the Scopus database
—