On variants of distributional chaos in dimension one
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F11%3A%230000301" target="_blank" >RIV/47813059:19610/11:#0000301 - isvavai.cz</a>
Result on the web
<a href="http://www.tandfonline.com/doi/abs/10.1080/14689367.2011.588199" target="_blank" >http://www.tandfonline.com/doi/abs/10.1080/14689367.2011.588199</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/14689367.2011.588199" target="_blank" >10.1080/14689367.2011.588199</a>
Alternative languages
Result language
angličtina
Original language name
On variants of distributional chaos in dimension one
Original language description
In their famous paper from 1994, B. Schwaizer and J. Smital, [B. Schwaizer and J. Smital, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), pp. 737-754] fully characterized topological entropy of interval maps in terms of distribution functions of distance between trajectories. Strictly speaking, they proved that a continuous map f :[0, 1]->[0, 1] has zero topological entropy if and only if for every x, y is an element of [0, 1] thefollowing limit exists: lim(n -> infinity) 1/n vertical bar{0 <= i < n : d (f(i)(x),f(i)(y)) < t}vertical bar for every real number t except at most countable set. While many partial efforts have been made in previous years, still there is no proof thatthe result of Schwaizer and Smital holds on every topological graph. Here we offer the proof of this fact, filling a gap existing in the literature of the topic.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Dynamical Systems: An International Journal
ISSN
1468-9367
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
273-285
UT code for WoS article
000299632100004
EID of the result in the Scopus database
—