On regular solutions of the generalized Dhombres equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F15%3A%230000465" target="_blank" >RIV/47813059:19610/15:#0000465 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00010-014-0272-8" target="_blank" >http://link.springer.com/article/10.1007%2Fs00010-014-0272-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00010-014-0272-8" target="_blank" >10.1007/s00010-014-0272-8</a>
Alternative languages
Result language
angličtina
Original language name
On regular solutions of the generalized Dhombres equation
Original language description
We consider continuous solutions f : R+ -> R+ = (0, infinity) of the functional equation f(xf(x)) = phi(f(x)) where phi is a given continuous map R+ -> R+. A solution f is singular if there are 0 < a <= b < infinity such that f vertical bar((0, a)) > 1,f vertical bar([a, b]) = 1, and f vertical bar((b, infinity)) < 1; other solutions are regular. It is known that the range R-f of a singular solution can contain periodic orbits of phi of all periods. In this paper we show that the range of a regular solution f contains no periodic point of phi of period different from 2(n), n is an element of N so that phi vertical bar R-f has zero topological entropy. It follows, that the regular solutions are just the solutions f satisfying one of the conditions: (i)R-f subset of (0, 1], (ii) R-f subset of [1, infinity), (iii) there are 0 < a <= b < infinity such that f(vertical bar(0, a)) < 1, f(vertical bar[a, b] equivalent to) 1, and f(vertical bar(b,infinity)) > 1.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F0887" target="_blank" >GAP201/10/0887: Discrete dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Aequationes mathematicae
ISSN
0001-9054
e-ISSN
—
Volume of the periodical
89
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
5
Pages from-to
57-61
UT code for WoS article
000351225000006
EID of the result in the Scopus database
—