Integrable quantum Stäckel systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F13%3A%230000391" target="_blank" >RIV/47813059:19610/13:#0000391 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0375960113007135#" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0375960113007135#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physleta.2013.08.005" target="_blank" >10.1016/j.physleta.2013.08.005</a>
Alternative languages
Result language
angličtina
Original language name
Integrable quantum Stäckel systems
Original language description
The Stäckel separability of a Hamiltonian system is well known to ensure existence of a complete set of Poisson commuting integrals of motion quadratic in the momenta. We consider a class of Stäckel separable systems where the entries of the Stäckel matrix are monomials in the separation variables. We show that the only systems in this class for which the integrals of motion arising from the Stäckel construction keep commuting after quantization are, up to natural equivalence transformations, the so-called Benenti systems. Moreover, it turns out that the latter are the only quantum separable systems in the class under study.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physics Letters A
ISSN
0375-9601
e-ISSN
—
Volume of the periodical
377
Issue of the periodical within the volume
38
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
2564-2572
UT code for WoS article
000325190200021
EID of the result in the Scopus database
—