Infinitely many nonlocal conservation laws for the ABC equation with A + B + C ≠ 0
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F16%3AN0000176" target="_blank" >RIV/47813059:19610/16:N0000176 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00526-016-1061-0" target="_blank" >http://link.springer.com/article/10.1007%2Fs00526-016-1061-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-016-1061-0" target="_blank" >10.1007/s00526-016-1061-0</a>
Alternative languages
Result language
angličtina
Original language name
Infinitely many nonlocal conservation laws for the ABC equation with A + B + C ≠ 0
Original language description
We construct an infinite hierarchy of nonlocal conservation laws for the ABC equation Au(t)u(xy) + Bu(x)u(ty) + Cu(y)u(tx) = 0, where A, B, C are nonzero constants and A + B + C ≠ 0, using a nonisospectral Lax pair. As a byproduct, we present new coverings for the equation in question. The method of proof of nontriviality of the conservation laws under study is quite general and can be applied to many other integrable multidimensional systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Calculus of Variations and Partial Differential Equations
ISSN
0944-2669
e-ISSN
—
Volume of the periodical
55
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
1-12
UT code for WoS article
000386708700015
EID of the result in the Scopus database
2-s2.0-84988874528