A new sufficient condition for local regularity of a suitable weak solution to the MHD equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542099" target="_blank" >RIV/67985840:_____/21:00542099 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2021.125258" target="_blank" >https://doi.org/10.1016/j.jmaa.2021.125258</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2021.125258" target="_blank" >10.1016/j.jmaa.2021.125258</a>
Alternative languages
Result language
angličtina
Original language name
A new sufficient condition for local regularity of a suitable weak solution to the MHD equations
Original language description
We assume that is either the whole space R3 or a half-space or a smooth bounded or exterior domain in R3, T > 0 and (u, b, p) is a suitable weak solution of the MHD equations in (0, T). We show that (x0, t0) 2 (0, T) is a regular point of the solution (u, b, p) if the limit inferior (for t ! t0) of the sum of the L3-norms of u and b over an arbitrarily small ball B(x0) is less than infinity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
502
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
125258
UT code for WoS article
000658959900022
EID of the result in the Scopus database
2-s2.0-85114055113