All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A new sufficient condition for local regularity of a suitable weak solution to the MHD equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542099" target="_blank" >RIV/67985840:_____/21:00542099 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jmaa.2021.125258" target="_blank" >https://doi.org/10.1016/j.jmaa.2021.125258</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2021.125258" target="_blank" >10.1016/j.jmaa.2021.125258</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A new sufficient condition for local regularity of a suitable weak solution to the MHD equations

  • Original language description

    We assume that is either the whole space R3 or a half-space or a smooth bounded or exterior domain in R3, T > 0 and (u, b, p) is a suitable weak solution of the MHD equations in (0, T). We show that (x0, t0) 2 (0, T) is a regular point of the solution (u, b, p) if the limit inferior (for t ! t0) of the sum of the L3-norms of u and b over an arbitrarily small ball B(x0) is less than infinity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Volume of the periodical

    502

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    125258

  • UT code for WoS article

    000658959900022

  • EID of the result in the Scopus database

    2-s2.0-85114055113