A contribution to the theory of regularity of a weak solution to the Navier-Stokes equations via one component of velocity and other related quantities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00492100" target="_blank" >RIV/67985840:_____/18:00492100 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-018-0365-6" target="_blank" >http://dx.doi.org/10.1007/s00021-018-0365-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-018-0365-6" target="_blank" >10.1007/s00021-018-0365-6</a>
Alternative languages
Result language
angličtina
Original language name
A contribution to the theory of regularity of a weak solution to the Navier-Stokes equations via one component of velocity and other related quantities
Original language description
We deal with a suitable weak solution (v, p) to the Navier–Stokes equations in (0, T), where is a domain in R3, T > 0 and v = (v1, v2, v3). We show that the regularity of (v, p)at a point (x0, t0) 2 (0, T) is essentially determined by the Serrin–type integrability of the positive part of a certain linear combination of v2 1, v2 2, v2 3 and p in a backward neighborhood of (x0, t0). An appropriate choice of coefficients in the linear combination leads to the Serrin–type condition on one component of v or, alternatively, on the positive part of the Bernoulli pressure 1 2 jvj2 + p or the negative part of p, etc.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
1249-1267
UT code for WoS article
000441287600018
EID of the result in the Scopus database
2-s2.0-85051442840