New Conditions for Local Regularity of a Suitable Weak Solution to the Navier - Stokes Equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F02%3A02077539" target="_blank" >RIV/68407700:21220/02:02077539 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
New Conditions for Local Regularity of a Suitable Weak Solution to the Navier - Stokes Equation
Original language description
We formulate conditions which guarantee that a suitable weak solution (v,p) to the Navier-Stokes equation (in the sense of L. Caffarelli, R. Kohn and L. Nirenberg [2]) cannot have a singularity at the point (x0, t0). The usual Prodi-Serrin condition on velocity v is substantially replaced by an analogous condition imposed on the negative part p_ of pressure p.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F99%2F0267" target="_blank" >GA201/99/0267: Qualitative theory and numerical analysis of problems in fluid dynamics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
4
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
237-256
UT code for WoS article
—
EID of the result in the Scopus database
—