All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

New Conditions for Local Regularity of a Suitable Weak Solution to the Navier - Stokes Equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F02%3A02077539" target="_blank" >RIV/68407700:21220/02:02077539 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    New Conditions for Local Regularity of a Suitable Weak Solution to the Navier - Stokes Equation

  • Original language description

    We formulate conditions which guarantee that a suitable weak solution (v,p) to the Navier-Stokes equation (in the sense of L. Caffarelli, R. Kohn and L. Nirenberg [2]) cannot have a singularity at the point (x0, t0). The usual Prodi-Serrin condition on velocity v is substantially replaced by an analogous condition imposed on the negative part p_ of pressure p.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F99%2F0267" target="_blank" >GA201/99/0267: Qualitative theory and numerical analysis of problems in fluid dynamics</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    4

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

    237-256

  • UT code for WoS article

  • EID of the result in the Scopus database