All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

New regularity criteria for weak solutions to the MHD equations in terms of an associated pressure

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00543473" target="_blank" >RIV/67985840:_____/21:00543473 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00021-021-00597-9" target="_blank" >https://doi.org/10.1007/s00021-021-00597-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-021-00597-9" target="_blank" >10.1007/s00021-021-00597-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    New regularity criteria for weak solutions to the MHD equations in terms of an associated pressure

  • Original language description

    We assume that Ω is either a smooth bounded domain in R3 or Ω = R3, and Ω ′ is a sub-domain of Ω. We prove that if 0 ≤ T1< T2≤ T≤ ∞, (u, b, p) is a suitable weak solution of the initial–boundary value problem for the MHD equations in Ω × (0 , T) and either Fγ(p-)∈L∞(T1,T2,L3/2(Ω′)) or Fγ(B+)∈L∞(T1,T2,L3/2(Ω′)) for some γ> 0 , where Fγ(s)=s[ln(1+s)]1+γ, B=p+12|u|2+12|b|2 and the subscripts “−” and “+ ” denote the negative and the nonnegative part, respectively, then the solution (u, b, p) has no singular points in Ω ′× (T1, T2). If b≡ 0 then our result generalizes some previous known results from the theory of the Navier–Stokes equations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

    1422-6952

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

    73

  • UT code for WoS article

    000662934400001

  • EID of the result in the Scopus database

    2-s2.0-85108059152