All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F19%3AA0000061" target="_blank" >RIV/47813059:19610/19:A0000061 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0022039619302505?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039619302505?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2019.05.033" target="_blank" >10.1016/j.jde.2019.05.033</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation

  • Original language description

    In this paper we consider a five-parameter equation including the Camassa-Holm and the Dullin-Gottwald-Holm equations, among others. We prove the existence and uniqueness of solutions of the Cauchy problem using Kato's approach. Conservation laws of the equation, up to second order, are also investigated. From these conservation laws we establish some properties for the solutions of the equation and we also find a quadrature for it. The quadrature obtained is of capital importance in a classification of bounded travelling wave solutions. We also find some explicit solutions, given in terms of elliptic integrals. Finally, we classify the members of the equation describing pseudo-spherical surfaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

    1090-2732

  • Volume of the periodical

    267

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    52

  • Pages from-to

    5318-5369

  • UT code for WoS article

    000480416600011

  • EID of the result in the Scopus database

    2-s2.0-85066321295