A non-Borel special alpha-limit set in the square
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F22%3AA0000119" target="_blank" >RIV/47813059:19610/22:A0000119 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/nonborel-special-alphalimit-set-in-the-square/48C7F0D48DC9D31458F7ED63ED195AC1" target="_blank" >https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/nonborel-special-alphalimit-set-in-the-square/48C7F0D48DC9D31458F7ED63ED195AC1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/etds.2021.68" target="_blank" >10.1017/etds.2021.68</a>
Alternative languages
Result language
angličtina
Original language name
A non-Borel special alpha-limit set in the square
Original language description
We consider the complexity of special alpha-limit sets, a kind of backward limit set for non-invertible dynamical systems. We show that these sets are always analytic, but not necessarily Borel, even in the case of a surjective map on the unit square. This answers a question posed by Kolyada, Misiurewicz, and Snoha.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ergodic Theory and Dynamical Systems
ISSN
0143-3857
e-ISSN
1469-4417
Volume of the periodical
42
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
2550-2560
UT code for WoS article
000767040400001
EID of the result in the Scopus database
2-s2.0-85111071309