A family of homogeneous operators in the Cowen-Douglas class over the poly-disc
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000129" target="_blank" >RIV/47813059:19610/23:A0000129 - isvavai.cz</a>
Result on the web
<a href="https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/271/1/115001/a-family-of-homogeneous-operators-in-the-cowen-douglas-class-over-the-poly-disc" target="_blank" >https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/271/1/115001/a-family-of-homogeneous-operators-in-the-cowen-douglas-class-over-the-poly-disc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/sm220630-10-1" target="_blank" >10.4064/sm220630-10-1</a>
Alternative languages
Result language
angličtina
Original language name
A family of homogeneous operators in the Cowen-Douglas class over the poly-disc
Original language description
We construct a large family of positive definite kernels K : Dn x Dn-+ M(r, C), holomorphic in the first variable and anti-holomorphic in the second, that are quasi-invariant with respect to the subgroup Mob x center dot center dot center dot x Mob (n times) of the bi-holomorphic automorphism group of Dn. The adjoint of the n-tuple of the multiplication operators by the co-ordinate functions is then homogeneous with respect to this subgroup on the Hilbert space ?-lK determined by K. We show that these n-tuples are irreducible, are in the Cowen-Douglas class Br(Dn) and are mutually pairwise unitarily inequivalent.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-27941S" target="_blank" >GA21-27941S: Function theory and related operators on complex domains</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Mathematica
ISSN
0039-3223
e-ISSN
1730-6337
Volume of the periodical
271
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
20
Pages from-to
65-84
UT code for WoS article
000953362200001
EID of the result in the Scopus database
2-s2.0-85164923715