On distributional spectrum of piecewise monotonic maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000133" target="_blank" >RIV/47813059:19610/23:A0000133 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00010-022-00913-2" target="_blank" >https://link.springer.com/article/10.1007/s00010-022-00913-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00010-022-00913-2" target="_blank" >10.1007/s00010-022-00913-2</a>
Alternative languages
Result language
angličtina
Original language name
On distributional spectrum of piecewise monotonic maps
Original language description
We study a certain class of piecewise monotonic maps of an interval. These maps are strictly monotone on finite interval partitions, satisfy the Markov condition, and have generator property. We show that for a function from this class distributional chaos is always present and we study its basic properties. The main result states that the distributional spectrum, as well as the weak spectrum, is always finite. This is a generalization of a similar result for continuous maps on the interval, circle, and tree. An example is given showing that conditions on the mentioned class can not be weakened.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Aequationes Mathematicae
ISSN
0001-9054
e-ISSN
1420-8903
Volume of the periodical
97
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
133-145
UT code for WoS article
000854419800001
EID of the result in the Scopus database
2-s2.0-85138187893