All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On distributional spectrum of piecewise monotonic maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000133" target="_blank" >RIV/47813059:19610/23:A0000133 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00010-022-00913-2" target="_blank" >https://link.springer.com/article/10.1007/s00010-022-00913-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00010-022-00913-2" target="_blank" >10.1007/s00010-022-00913-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On distributional spectrum of piecewise monotonic maps

  • Original language description

    We study a certain class of piecewise monotonic maps of an interval. These maps are strictly monotone on finite interval partitions, satisfy the Markov condition, and have generator property. We show that for a function from this class distributional chaos is always present and we study its basic properties. The main result states that the distributional spectrum, as well as the weak spectrum, is always finite. This is a generalization of a similar result for continuous maps on the interval, circle, and tree. An example is given showing that conditions on the mentioned class can not be weakened.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Aequationes Mathematicae

  • ISSN

    0001-9054

  • e-ISSN

    1420-8903

  • Volume of the periodical

    97

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    133-145

  • UT code for WoS article

    000854419800001

  • EID of the result in the Scopus database

    2-s2.0-85138187893